
Payments Engineering
Lessons Learned in Writing Software for Payments

● What is payments engineering?
○ Overview
○ What’s a payment (system) ?
○ Credit Cards

● Problem Solving in Payments Software
○ Reconciliation and auditing
○ Double charges
○ Testing and observability

● Q&A

What is Payments Engineering?
Building software in the problem domain of
payments. Working with or building
payment systems.

● Understanding real payment systems
● Complex state management
● Security and privacy
● Precision, correctness
● Auditability, reconciliation
● Fault tolerant
● Expensive mistakes

What’s a Payment Anyway?
Payment: “A transfer of value between a sender and
a receiver, denominated in some currency.”[1]

[1] C. C. Benson, S. Loftesness, and R. Jones, Payments Systems in the U.S.: A Guide for the
Payments Professional. 2017.

What’s a Payment (System) Anyway?
Payment System: “Connects senders and receivers,
and provides framework for transfering value.” [1]

Some examples:

● Credit Cards: Visa, Mastercard
● Bank transfers - ACH, wires
● Cash
● Digital currencies

[1] C. C. Benson, S. Loftesness, and R. Jones, Payments Systems in the U.S.: A Guide for the Payments Professional. 2017.

Credit Cards

https://www.thebalancemoney.com/history-of-credit-cards-4766953

● Pretty old idea
● Modern cards still modeled

on processes that pre-date
computers

Credit Cards

https://www.bbc.com/news/business-39870485

Credit Cards

https://www.nytimes.com/wirecutter/blog/your-mesopotamian-credit-card/

Credit Cards: a Beautiful State Machine

Credit Cards: Parties Involved

Credit Cards: Authorize

Credit Cards: Authorize

Credit Cards: Authorize

Credit Cards: Authorize

Credit Cards: Authorize

Credit Cards: Capture

Credit Cards: Settlement

Credit Cards: Unhappy path(s)

Credit Cards: Unhappy path(s)

Problem Solving in Payment Software

Modeling Payments
● Long, complex life cycles
● Things happen at a point in time

Problem: Reconciliation and auditing
● How much money did we make in February?

id date amount status
1001 2024-02-01 $100.00 settled

1002 2024-02-03 $20.00 settled

1003 2024-02-04 $300.00 settled

1004 2024-02-05 $150.00 settled

1005 2024-02-07 $10.00 settled

Problem: Reconciliation and auditing
● How much money did we make in February?

id date amount status
1001 2024-02-01 $100.00 settled

1002 2024-02-03 $20.00 settled

1003 2024-02-04 $300.00 settled

1004 2024-02-05 -$150.00 refunded

1005 2024-02-07 -$10.00 charged back

Problem: Reconciliation and auditing
● Things happen at a point in time. Record facts.

id date amount status
1001 2024-02-01 $100.00 settled

1002 2024-02-03 $20.00 settled

1003 2024-02-04 -$300.00 refunded

1004 2024-02-05 -$150.00 charged back

1005 2024-02-07 $10.00 settled

Solution: Immutable architecture
● Git
● Ledgers
● Kafka

Solution: Immutable architecture

https://www.reddit.com/r/linuxmemes/comments/17n0nzb/the_holy_trinity

ty https://xeiaso.net

Problem: Avoiding double charges
● “Don’t click twice”
● “Something went wrong”

The Network is Unreliable
● Problems w/ distributed systems

○ “Fallacies of Distributed Computing (L Peter Deutsch, James Gosling ~ 1996)
● 99% - 99.9% success rate?

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Solution: Idempotency

https://aws.amazon.com/builders-library/making-retries-safe-with-idempotent-APIs/

● POST Once Exactly (POE) IETF
2005

● Idempotency Keys (Stripe, AWS, etc)

https://datatracker.ietf.org/doc/html/draft-nottingham-http-poe
https://datatracker.ietf.org/doc/html/draft-nottingham-http-poe

Idempotency Keys

hash(user_id, order_id, amount) ->

fade33ef5120fdd0da8c44cc7cfd0bb21a5974272112d2aff410ceaf0445187a

OR

uuid4() -> ab1eaf28-e0f1-11ee-93cd-2f34b72080a7

Idempotency Keys

https://stripe.com/blog/idempotency

Click to your Heart’s Content

Fundamentals - Testing
Your code will get tested,
one way or another.

UI / End-to-End

Integration

Unit Tests

Unit Tests
● Fast (seconds)
● Isolated
● Mocks and Stubs
● Domain/Business Logic

Integration Tests
● Slower than unit tests but should still be fast
● Test multiple components working together
● Possibly from real infra

UI / End-to-End
● Slower, sometimes fragile
● Real calls against staging environments
● Go through entire “flows”

Fundamentals - Logging and monitoring
● Log enough to be useful
● Avoid logging entire objects
● Understand your key metrics

Q&A

